Motion planning with sequential convex optimization and convex collision checking
نویسندگان
چکیده
We present a new optimization-based approach for robotic motion planning among obstacles. Like CHOMP (Covariant Hamiltonian Optimization for Motion Planning), our algorithm can be used to find collision-free trajectories from naïve, straight-line initializations that might be in collision. At the core of our approach are (a) a sequential convex optimization procedure, which penalizes collisions with a hinge loss and increases the penalty coefficients in an outer loop as necessary, and (b) an efficient formulation of the no-collisions constraint that directly considers continuous-time safety Our algorithm is implemented in a software package called TrajOpt. We report results from a series of experiments comparing TrajOpt with CHOMP and randomized planners from OMPL, with regard to planning time and path quality. We consider motion planning for 7 DOF robot arms, 18 DOF full-body robots, statically stable walking motion for the 34 DOF Atlas humanoid robot, and physical experiments with the 18 DOF PR2. We also apply TrajOpt to plan curvature-constrained steerable needle trajectories in the SE( 3) configuration space and multiple non-intersecting curved channels within 3D-printed implants for intracavitary brachytherapy. Details, videos, and source code are freely available at: http://rll.berkeley.edu/trajopt/ijrr.
منابع مشابه
Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملFinding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization
We present a novel approach for incorporating collision avoidance into trajectory optimization as a method of solving robotic motion planning problems. At the core of our approach are (i) A sequential convex optimization procedure, which penalizes collisions with a hinge loss and increases the penalty coefficients in an outer loop as necessary. (ii) An efficient formulation of the no-collisions...
متن کاملModel Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming
This paper presents a decentralized, model predictive control algorithm for the optimal guidance and reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In previous work,J2-invariant orbits have been found to provide collision-freemotion for hundreds of orbits in a lowEarth orbit. This paper develops real-time optimal control algorithms...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملCollision avoidance for aerial vehicles in multi-agent scenarios
This article describes an investigation of local motion planning, or collision avoidance, for a set of decisionmaking agents navigating in 3D space. The method is applicable to agents which are heterogeneous in size, dynamics and aggressiveness. It builds on the concept of velocity obstacles (VO),which characterizes the set of trajectories that lead to a collision between interacting agents. Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 33 شماره
صفحات -
تاریخ انتشار 2014